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Swelling of a model polymer network by a one-site solvent:
Computer simulation and Flory-Huggins-like theory

Z.-Y. Lu and R. Hentschke
FB Physik, Bergische Universita¨t-Gesamthochschule, D-42097 Wuppertal, Germany

~Received 8 November 2000; published 9 April 2001!

A molecular-dynamics–Widom test particle-simulation was used to investigate the swelling of a model
polymer network in contact with a one-site solvent under subcritical and supercritical conditions. Particle
motion is computed via molecular dynamics. Simultaneously, the solvent particle concentration is controlled
by direct comparison of the chemical potentials in two reference systems~pure solvent and network including
solvent!, which are calculated using Widom’s test particle method. The simulated swelling isotherms exhibit
complex behavior: at the subcritical conditions considered here, the swelling ratio decreases with increasing
pressure. At the intermediate supercritical temperatures the isotherms exhibit a peak, which disappears with the
elevation of temperature. At high temperatures, the swelling ratio of the network increases monotonically with
increasing pressure. The corresponding isobars also exhibit a maximum, which broadens and shifts to higher
temperatures with increasing supercritical pressure. These results are in qualitative agreement with the predic-
tion of a modified Flory-Huggins theory and with the results of known experiments. Furthermore, the self-
diffusion coefficients of the solvent in the network and in its pure state are simulated. The solvent mobility in
the network is significantly decreased because of the hindrance of network beads, but exhibits different
behavior at subcritical in comparison to supercritical temperatures.

DOI: 10.1103/PhysRevE.63.051801 PACS number~s!: 61.25.Hq, 05.10.2a, 05.50.1q, 05.20.2y
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I. INTRODUCTION

Computer experiments of polymer networks are mo
vated by the fact that in contrast to experimental systems
precise control of the network structure is straightforwa
Consequently, the relation between swelling behavior
network structure becomes more transparent. Although th
are a number of molecular simulation studies on the dyna
and structural properties of polymer networks~see, for ex-
ample, Refs.@1–3#!, detailed studies of their swelling beha
ior including explicit solvents are scarce. Recently, Escob
and de Pablo have published Monte Carlo simulations on
swelling of athermal gels@4# and for corresponding gel sys
tems using square well and modified Lennard-Jones po
tials @5#. Kenkareet al. have conducted combined disco
tinuous molecular dynamics and Monte Carlo simulations
the swelling behavior of an athermal gel with hard-sph
solvents@6#. Aydt and Hentschke@7# also published results
for swelling equilibria in model network-solvents system
with Lennard-Jones nonbonded interactions using Gib
Ensemble molecular dynamics simulations@8,9#. To our
knowledge, these are the first simulation studies on solv
network phase equilibria with explicit inclusion of solve
molecules.

Applications of networks are usually confined to subcr
cal solvent conditions. But with the increasing use of sup
critical fluids in experiments where small changes in te
perature or pressure may affect the solvent quality of
supercritical fluid significantly@10#, the theoretical investiga
tion of network swelling including supercritical as well a
subcritical fluids also is of increasing interest. In this pap
we use classical molecular dynamics to investigate the sw
ing of a model network by subcritical and supercritical on
site solvents. During the molecular-dynamics simulations
1063-651X/2001/63~5!/051801~8!/$20.00 63 0518
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solvent chemical potentials are calculated via Widom
method@11#. The resulting values in the network simulatio
cell and in a simulation cell containing only solvent at ide
tical thermodynamic conditions are compared and are u
to transfer solvent particles between the simulation cells u
chemical equilibrium is attained. Knowing the values of t
chemical potentials is useful for understanding the molecu
mechanism of the temperature and pressure dependen
the swelling behavior. In particular we discuss the tempe
ture and pressure dependence of the network swelling ratq,
which is in very good qualitatively agreement with an e
tended Flory-Huggins model. The complex swelling beha
ior is attributed to the interplay between the excess solv
chemical potentials and the solvent densities in the two sim
lation boxes. The diffusion of the solvent in the network
also investigated, and the results are found to be in g
accord with corresponding experiments.

II. SIMULATION METHOD
AND MODEL CONSTRUCTION

In our simulations the particle transfer between
network-solvent box and a pure solvent box is controlled
the direct comparison of their respective solvent chem
potentials, which are calculated via Widom’s method@11#. In
equilibrium the two boxes, coupled in this fashion, poss
the same temperature, pressure, and solvent chemical p
tial. Such two-boxes–particle-transfer simulations have
advantage that the chemical equilibrium between the b
phases can be studied without having to include interfac
which are both time and space consuming. In addition,
have access to the dynamics in the network, because
normal particle translations follow the classical equations
motion. Hereafter we distinguish the two simulation box
via the indices 0 and 1, and we define a transfer variabj
©2001 The American Physical Society01-1
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Z.-Y. LU AND R. HENTSCHKE PHYSICAL REVIEW E63 051801
for every solvent particle.j50 or j51 mean that a particle
resides in box 0 or 1, respectively. In ourNPT ~constant
total number of particles, pressure, and temperature! simula-
tion, the chemical potential in the two boxes,mk(k50,1),
can be expressed by@12#

mk5mk
i 1mk

e , ~1!

wheremk
i , the ideal gas chemical potential, is given by

mk
i 5kBT lnF ~Nk11!L3

^Vk&
G ~2!

andmk
e , the excess chemical potential, can be calculated

the NPT version of the Widom insertion method:

mk
e52kBT lnF ^Vkexp~2bfk!&

^Vk&
G . ~3!

HereNk(k50,1) is the number of solvent particles in sim
lation boxk with volumeVk , L is the thermal wavelength o
the solvent,b51/kBT, wherekB is the Boltzmann constant
T is the temperature, andfk is the potential energy exper
enced by the randomly inserted solvent test particle.^& in the
above equations denotes ensemble averages.

The equations of motion governing the time evolution
our system are

vẆ i52
1

mi

]U
]rW i

2zkvW i , ~4!

rẆ i5vW i1hkrW i , ~5!

L̇k

Lk
5hk , ~6!

hk5
kT

3tP
~Pinst,k2P!, ~7!

zk5
1

2tT
S 12

T

Tinst,k
D , ~8!

which is the weak coupling method due to Berendsenet al.
@13#. U is the total potential energy of the entire system, a
rW i and vW i are the position and the respective velocity of
teraction centeri with massmi . Tinst,k and Pinst,k are the
instantaneous temperatures and pressures, andtT andtP are
the temperature and pressure relaxation times.kT is the iso-
thermal compressibility.Lk

3 is the volume of boxk. The
equations of motion are integrated via the leap-frog al
rithm @14# with an integration stepDt51.4231023 in re-
duced time units.

The total potential energyU is given by U5ULJ1Unet,
where
05180
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d

-

ULJ5(
i , j

4« i j F S s

r i j
D 12

2S s

r i j
D 6Gj ij j1 (

i 8, j 8
4« i 8 j 8

3F S s

r i 8 j 8
D 12

2S s

r i 8 j 8
D 6G ~12j i 8!~12j j 8!. ~9!

The first sum in Eq.~9! describes the nonbonded potent
energy in the pure solvent box, wherer i j 5urW i2rW j u is the
distance between two solvent particles. The second sum
resents the nonbonded potential energy in the box contai
both the network and the solvent, wherer i 8 j 85urW i 82rW j 8u is
the distance between two interaction centers, includ
solvent-solvent, solvent-network, and network-network~be-
yond the 1-2 interactions! interaction pairs. To increase th
numerical stability during particle transfer without, howeve
affecting the equilibrium properties of the system, we us
parabolic functionUc52( i , j@x i j (r i j 1b)21z i j #, instead of
the Lennard-Jones potential wheneverr i j is smaller than an
inner cutoff radiusd. b shifts the vertex of the inverted pa
rabola leading to a nonzero force atr i j 50. The parameters
x i j and z i j can be evaluated from the conditionsULJ(d)
5Uc(d) and dULJ(d)/dri j 5dUc(d)/dri j . Here we use
d/s i j 50.7 andb/s i j 50.026. In addition, we use a long
range cutoffr cut52.9s i j , beyond which the potential energ
is 0. The interactions between bonded network beadsUnet are
represented by a harmonic potential

Unet5(̂
i j &

kb~ l i j 2 l 0!2. ~10!

Here kb is the force constant, andl i j and l 0 are the actual
length and the reference length of the effective bond c
necting the network beadsi and j. The angular brackets in
dicate that the summation includes all relevant pairs in
model network. Our model network which is not intended
be a chemically realistic model on the atomic level, is
sixfold coordinated simple cubic lattice with a lattice co
stant 2l 0 ~see Ref.@7#, Fig. 1!. Note that we use periodic
boundary conditions for the bonded as well as the nonbon
interactions in our system. The corresponding force field
rameters together with the thermostat and the barostat
pling constants are compiled in Table I. The parameters
the unlike interaction centers are calculated using
Lorentz-Berthelot mixing rules@14#. Note also that we have
tested the dependence of our results on the thermostat
barostat coupling constants, but we did not find any sign
cant effects in a wide range bracketing the values given
Table I.

In order to investigate the swelling of the model netwo
in contact with the one-site solvent, we initially start wi
256 nontransferable network beads and 174 solvent part
distributed homogeneously in box 0. Box 1 contains 8
solvent particles. To relax the unfavorable initial netwo
geometry, a 105 time stepsNVT simulation is executed firs
without solvent transfer. Subsequently, anNPT simulation is
carried out allowing solvent exchange after 105 time steps.
Typical simulation runs range from 33106 to 63106 time
steps total. The solvent exchange between the two simula
1-2
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SWELLING OF A MODEL POLYMER NETWORK BY A . . . PHYSICAL REVIEW E63 051801
boxes is controlled by direct comparison of the solve
chemical potentials, which are calculated by Eq.~1!. This
means that during 23103 time steps 53104 test particle
positions are generated at random in each of the two bo
and the excess solvent chemical potential is calculated
Eq. ~3!. A solvent particle is then transfered by changing
j value from 0 to 1 or 1 to 0 attempting to reduce the che
cal potential difference. Subsequently this process is
peated.

III. LATTICE THEORY

In order to compare our simulation results with a simp
theoretical model, we extend the Flory-Huggins latti
theory @15# by adding empty sites to the system, which is
Sanchez-Lacombe–type proposal@16#. The incorporation of
the empty sites is nontrivial and has been considered in o
similar theories@5,17# in the context of swelling phenomena
Here we extend a calculation originally presented in Ref.@7#
including chainlike solvents as well as the sixfold coordin
tion of our model network in the elastic entropy~and remov-
ing an unnecessary assumption!. The model is a cubic lattice
of N05N1Qs1N2Q1N3 sites, whereN1 is the number of
solvent chains occupyingQs neighboring lattice sites,N2 is
the number of network polymer chains occupyingQ neigh-
boring lattice sites, andN3 is the remaining number of empt
lattice sites. The free energyF is given by

F5Uconf2TSconf2TSel , ~11!

whereUconf, Sconf, andSel are the configuration energy, th
configuration entropy, and the elastic entropy, respectiv
Specifically we have

F5
kBTV

v0
@xw1

Nw22~x1w1
N1x2w2!w#

1
kBTV

v0
Fw1

N

Qs
ln

w1
N

Qs
1

w2

Q
ln

w2

Q
1~12w!ln~12w!

2S Qs21

Qs
w1

N1
Q21

Q
w2D ln

qz21

e G

TABLE I. The force field parameters and the thermost
barostat parameters. The solvent possesses only one center o
C. NN represents the network sites. Note that we have scaled
unit to makeTc5Pc5m51 in our system.

Lennard-Jones s e m

C 0.457 0.779 1.0
NN 0.580 0.779 1.0

Bond stretch kb l 0

NN2NN 9083.1 0.722

Value

Dt 1.4231023

tT 0.142
tP /kT 0.308
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1
kBTV

v0
Fw2

Q S 3a223

2
2 ln a D G . ~12!

@Note that (qz21)Q11 in Eqs. ~16! and ~19! of Ref. @7#
should be replaced by (qz21)2Q11.# Herev0 is the volume
of the unit lattice cell, andV is the total volume of the sys
tem. The first term in Eq.~12! is the configuration energy
where x52qz(e111e2222e12)/(2kBT), x152qze11/
(2kBT), andx252qze22/(2kBT). qz is the coordination of
the lattice, ande11, e22, ande12 are the site-site interaction
energies between solvent-solvent, polymer-polymer,
solvent-polymer pairs~note that there are no interaction e
ergies involving empty sites!. The solvent volume fraction in
the gel w1

N is defined asw1
N5N1Qs /N0, and the network

polymer volume fraction isw25N2Q/N0. The quantityw is
given by w5w1

N1w2. The second term is2T times the
configuration entropy, and the last term is2T times the
elastic entropy of the network. Herea5(V/V0)1/3 is the iso-
tropic one-dimensional deformation ratio of the netwo
Note that the last term in Eq.~12! is obtained straightfor-
wardly by re-deriving Eq. ~21-6! in Ref. @18# using
(dV/V)2N2/3 for the cubic lattice instead of (dV/V)N2/2 for
the diamond lattice, wheredV is a small volume inside
which the crosslinking reaction can occur. Thus, the equa
of state for the gel~composed of the polymer network an
the solvent! is P52(]F/]V)N0 ,T , i.e.,

P* 5
v0P

kBT

5xw1
Nw22~x1w1

N1x2w2!w1
w1

N

Qs
2 ln~12w!2w

2
w2

Q S a22
4

3D . ~13!

Similarly, the free energy and the corresponding equation
state for the pure solvent outside the gel can be written

F5
kBTV

v0
F2x1w1

S21
w1

S

Qs
ln

w1
S

Qs
1~12w1

S!ln~12w1
S!G ,

~14!

P* 5
v0P

kBT
52x1w1

S21S 1

Qs
21Dw1

S2 ln~12w1
S!, ~15!

wherew1
S is the solvent volume fraction. Using thata51 for

the dry network, we can write the equation of state in t
case as

P* 52x2w2,0
2 2 ln~12w2,0!2w2,01

w2,0

3Q
, ~16!

where the subscript 0 refers to the dry network. In equil
rium, the chemical potential of the solventm1
5(]F/]N1)V,T , should be the same inside and outside
gel. Therefore we obtain

,
ype
he
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FIG. 1. Time evolution of the reduced solven
chemical potentials (bm), the reduced pressure
(Pinst /Pc), and the reduced solvent number de
sities (s3r) in the two coupled simulation boxe
during runs approaching the equilibrium cond
tions Tr50.89 and Pr52.17 ~left panels! and
Tr52.10 andPr52.17 ~right panels!. The solid
lines represent quantities in the pure solvent bo
and the dotted lines represent the same quanti
in the network box.
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S2w1

N!1
1

Qs
ln

w1
N

w1
S

1 ln
12w1

S

12w
50.

~17!

Bearing in mind that the swelling ratioq5V/V05w2,0/w2,
Eqs.~13!, ~15!, ~16!, and~17! can be solved numerically fo
the variablesw2,0, w1

S , w1
N , andq. The interaction paramete

x1 can be obtained via the critical isotherm of Eq.~15!, i.e.,
x152Tc /T, whereTc is the critical temperature of the pur
solvent. For the other two interaction parametersx andx2,
we use the expressionsx5uTc /T1v and x25u2Tc /T
1v2, which are subsequently used in this context, whereu,
v, u2, andv2 can be obtained by fitting the simulation r
sults semiquantitatively.

IV. RESULTS AND DISCUSSION

The characteristic quantity describing the swelling of t
network is the swelling ratioq. It is defined~see above! as
the volume of the swollen networkV divided by the volume
of the network in a dry reference stateV0 at the sameP and
T. HereV0 is obtained via a 105 time stepsNPT simulation
of the dry network with 256 sites. We use several differe
subcritical and supercritical conditions in the simulation
i.e., Tr5T/Tc takes on the values 0.79, 0.89, 1.05, 1.2
1.56, 1.84, 1.97, and 2.10, andPr5P/Pc takes on the values
1.30, 2.17, 4.34, 6.52, 8.69, 10.86, 13.03, and 15.20. HerTc
and Pc are the critical temperature and the critical press
of the one-site bulk solvent~our units are such thatTc5Pc
51).

To illustrate the simulation method, Fig. 1 shows the a
proach to chemical equilibrium for two selected condition
The fluctuations of the quantities in the network are la
compared to those in the solvent box, but the equilibration
the system is well established. As a check of our chem
potential calculations, Fig. 2 shows the reduced excess
vent chemical potential as a function of reduced number d
sity in the solvent box. Notice that forTr51.84 the result in
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t
,
,

e

-
.
e
f

al
ol-
n-

this work is in very good agreement with corresponding d
from Ref. @19#. The broken lines represent the results o
tained via virial expansions includingB3* , i.e., bme

'(n51
2 (n11)Bn11* r* n @20#. Here B* is the virial coeffi-

cient divided byb05 2
3 ps3, andr* is the reduced density

The values ofB2* and B3* are taken from Ref.@21#. It is
easily seen that only at very low densities the expansion
be used to predict the excess solvent chemical potential

Figure 3~a! shows the simulation results for the swellin
ratio q as a function of reduced pressure for the various te
peratures, i.e., the isotherms. The swelling behavior of
network in contact with the subcritical solvent is strong

FIG. 2. Reduced excess solvent chemical potential (bme) as a
function of reduced number density (s3r) in the solvent box. The
symbols are the results of this work, and the solid line represen
result taken from Ref.@19#. The reduced excess solvent chemic
potentials obtained from a virial expansion are shown as bro
lines.
1-4
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SWELLING OF A MODEL POLYMER NETWORK BY A . . . PHYSICAL REVIEW E63 051801
different from that in contact with the supercritical solven
For Tr50.79 and 0.89,q decreases monotonically with th
increase of pressure, while the isotherm exhibits a peak
Tr51.05. Such behavior is also discernible in the curve
Tr51.26, but the peak has moved to a higher reduced p
sure. For the higher temperatures (Tr51.56, 1.84, 1.97, and
2.10!, q increases monotonically with the increase of t
pressure. These differences in the network swelling beha
can be discussed in terms of the difference of the exc
solvent chemical potentials in the two simulation boxes~see
below!. By semiquantitatively reproducing the isotherm
Tr52.10, we obtain the above parametersu, v andu2 , v2.
Slightly different values for these parameters may yield
equally good fit, but this is not important here. Based
these values we may predict the shape of the other isothe
using our modified Flory-Huggins model. As is shown
Fig. 3~b!, the theoretical curves are in good qualitative agr

FIG. 3. The simulatedq-Pr isotherms. The symbols in~a! are
the simulation results, whereas the lines serve to guide the eye
lines in ~b! represent the results of the modified Flory-Huggi
theory. Herex50.7/Tr10.5 andx250.2/Tr12.2. The paramete
values are selected by semiquantatively fitting the isotherm
tained forTr52.1 in ~a!.
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ment with the corresponding simulation results. In Ref.@5#
the authors also show that the swelling of the network
generally greater at higher pressure under supercritical t
peratures. A similar tendency can also be found in exp
ments, for example, for the swelling of silicone rubber
supercritical carbon dioxide@10,22# (Tr51.01, 1.06, and
1.13!, the volume of the silicone rubber increases with
creasing pressure up toPr54.07. It should be noted that ou
result deviates from the corresponding result shown in Fig
of Ref. @7# due to a programming error in the simulatio
discussed in this reference.

Figure 4~a! shows simulated isobars for six different pre
sures ranging from subcritical (Pr50.87) to supercritical
(Pr51.30, 2.17, 4.34, 6.52, 10.86, and 15.20! conditions. It
can be seen that for the subcritical pressure, the isobar m
tonically decreases~i.e., the network shrinks! with the in-
crease of the temperature, while under the supercritical p
sures, the isobars exhibit a peak. This peak moves to hig

he

b-

FIG. 4. The swelling ratio (q) as a function of reduced tempera
ture (Tr) for the indicated pressures. The symbols in~a! represent
the simulation results, and the lines serve to guide the eye. The
in ~b! are the predictions of the modified Flory-Huggins theo
using the same interaction parameters as in Fig. 3~a!.
1-5
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Z.-Y. LU AND R. HENTSCHKE PHYSICAL REVIEW E63 051801
temperature with the increase of pressure and become
creasingly less pronounced. As is shown in Fig. 4~b!, the
theoretical predictions for the isobars exhibit the correspo
ing behavior.

Combining Figs. 3 and 4 we can draw the following co
clusions. Under the considered subcritical conditions,
network shrinks with increasing pressure or temperature
intermediate supercritical conditionsq has a maximum, and
this maximum shifts to higher supercritical pressures or te
peratures with the increase of the corresponding tempera
and pressure; at the highest supercrital pressures and
peratures considered here, the network appears to s
monotonically with the increase of temperature and press
This conclusion is in accordance with the results of ot
theoretical@5,23# and experimental investigations@22,24# in
the given subcritical and supercritical conditions.

For a further understanding of the mechanism of netw
swelling, we can define the solvent site absorbabilityA as the
ratio of the number of absorbed one-site solvents to the n
ber of network beads, i.e.,A5Nsolvent/Nbead. We define this
quantity because it reflects the capability of the network
absorb solvent, and it is directly related to the difference
the excess chemical potentials of the solvent in the
boxes. Using Eqs.~1!–~3! we obtain

A5
r1exp@b~m1

e2m0
e!#

rN
, ~18!

wherer1 is the number density of the solvent in its pure st
in equilibrium, rN is the number density of the networ
beads,m0

e andm1
e are the excess chemical potentials of s

vent in the gel and in the pure solvent, respectively. In F
5~a!, the site absorbabilityA is plotted vs the reduced pres
sure. Note thatA behaves analogous to the swelling ra
shown in Fig. 3~a!. The difference of the excess chemic
potentials of the solvent between the two simulation bo
exp@b(m1

e2m0
e)# and the density ratior1 /rN are shown in

Fig. 5~b! as functions of pressure for two supercritical te
peratures (Tr51.05 and 2.10!. It can be seen that exp@b(m1

e

2m0
e)# always increases with increasing pressure, while

density ratiosr1 /rN always decreases. Furthermore, atTr
51.05, the pressure has a stronger effect on both the ex
chemical potential difference and the density ratio as co
pared with theTr52.10 case. As a product of these tw
quantities, the site absorbabilityA shows a peak near th
critical pressure forTr51.05, while it increases monoton
cally with the increase of pressure forTr52.10. Therefore
we draw the conclusion that the competing effects of exc
chemical potential and the density ratio during the press
variation give rise to the observed complex behavior. T
site absorbability can also be obtained easily from the mo
fied Flory-Huggins theory viaA5N1 /NN5w1

Nq/w2,0 and
exp@b(m1

e2m0
e)# can be calculated by rewriting Eq.~17!. Fig-

ure 6 shows the theoretical site absorbability and exp@b(m1
e

2m0
e)# andr1 /rN as a function of reduced pressure acco

ing to the theoretical prediction. The qualitative agreem
between the simulation results in Fig. 5 and the predicti
of the modified Flory-Huggins theory is remarkable.
05180
in-

-

-
e
at

-
re
m-
ell
e.
r

k

-

o
f
o

e

-
.

l
s

-

e

ss
-

ss
re
e
i-

-
t
s

One advantage of molecular dynamics simulations
comparison to corresponding Monte Carlo simulations is t
the self-diffusion coefficientD can be calculated, for in-
stance, via the Einstein relation

Da5 lim
t→`

^ur a~ t !2r a~0!u2&
2t

, ~19!

wherea5x,y,z, and D51/3(Dx1Dy1Dz). We show the
self-diffusion coefficient of the solvent in the gelDN and in
the bulk solventDS as functions of reduced pressure in Fig
7~a! and 7~b!, respectively. Note that Fig. 7~c! also shows the
ratio DN /DS as a function of reduced pressure. At any of t
indicated temperatures, the diffusion coefficients basica
decrease with the increase of pressure, and in general,
are much higher at elevated temperatures for constant p
sure. Moreover, as shown in Fig. 7~b!, the values ofDS
under supercritical conditions are on the order
1024–1023 cm2 s21, which is approximately 10 times

FIG. 5. ~a! The site absorbability (A) as a function of reduced
pressure (Pr) for different reduced temperatures.~b! exp@b(m1

e

2m0
e)# and r1 /rN , represented by the solid lines and the dott

lines, respectively, as functions of reduced pressure. The fi
squares are the results forTr51.05, and the hollow circles are fo
Tr52.10.
1-6
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larger than the corresponding values at the given subcri
condition. This type of fast transport of the solvent is cruc
in technological applications. Compared to experimen
self-diffusion coefficients@25# under supercritical condition
~here we change the units to reproduceTc5190.53 K and
Pc546.04 bar for methane usingeM51.235 kJ/mol and
sM53.79 Å), we find that the values obtained in our sim
lations ~at Pr52.17, 4.34, 6.51, we obtain 18.8, 8.77, 5.
and 36.2, 18.4, 12.031024 cm2 s21 at Tr51.56 and 2.10,
respectively! are in very good agreement with those obtain
from the experiments~at Pr52.39, 4.56, 6.73, the values a
15.8, 7.70, 5.74, and 31.5, 18.4, 11.831024 cm2 s21 at Tr
51.55 and 2.12, respectively!. As shown in Fig. 7~c!, the
diffusion of solvent in the network is significantly decreas
because of the hindrance of network beads. For supercri
temperatures there appears to be an overall increas
DN /DS with increasing pressure. For the subcritical tempe

FIG. 6. ~a! The results of the modified Flory-Huggins theory f
the site absorbability (A) as a function of reduced pressure (Pr) for
different reduced temperatures (Tr). ~b! exp@b(m1

e2m0
e)# and

r1 /rN , represented by the bold lines and the thin lines, resp
tively, as functions of reduced pressure calculated via the mod
Flory-Huggins theory. The long-dashed lines are the results foTr

51.05, and the double-dashed lines are forTr52.10.
05180
al
l
l

-

d

al
of
-

ture we observe a sudden increase nearPr51 followed by a
slow decrease ofDN /DS with increasingPr .

V. CONCLUSIONS

In this paper, we investigate the swelling behavior o
model network by absorbing a Lennard-Jones one-site
vent under subcritical and supercritical conditions using
hybrid molecular dynamics-particle insertion simulatio
technique. We also correct erroneous results obtained for
system in Ref.@7#. In this work, chemical equilibrium is
attained via particle transfer controlled by the direct compa
son of the solvent chemical potentials in the two simulat
boxes. Temperature and pressure changes give rise to
plex swelling behavior. Under the considered subcriti
condition, the network shrinks with increasing pressure
temperature; under the intermediate supercritical condit

c-
d

FIG. 7. ~a! The self-diffusion coefficients of the solvent in th
gel (DN) as function of reduced pressure.~b! The self-diffusion
coefficients of the solvent in its pure state (DS) as function of
reduced pressure.~c! DN /DS as function of reduced pressure. Th
lines are meant to guide the eye.
1-7
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the swelling ratio exhibits a maximum, and this maximu
shifts to higher supercritical pressures or temperatures
the increase of either temperature or pressure; at the hig
supercritical pressure and temperature considered here
network basically swells monotonically as temperature
pressure increase. We attribute the complex swelling beh
ior to the competing effects of the excess solvent chem
potential difference and the density ratio computed for
two boxes. The mobility of the solvent in the gel is, as e
er

s

to

D

05180
th
est
the
r
v-
al
e
-

pected, hindered by the network beads. But this effect
pends rather strongly on the different subcritical or sup
critical conditions. A modified Flory-Huggins model is als
proposed in this work, and the qualitative agreement betw
the simulations and the theoretical predictions is found to
quite remarkable. For the conditions studied here, our res
are in accord with other theoretical investigations and exp
mental results.
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