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Swelling of a model polymer network by a one-site solvent:
Computer simulation and Flory-Huggins-like theory

Z.-Y. Lu and R. Hentschke
FB Physik, Bergische Universit&sesamthochschule, D-42097 Wuppertal, Germany
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A molecular-dynamics—Widom test particle-simulation was used to investigate the swelling of a model
polymer network in contact with a one-site solvent under subcritical and supercritical conditions. Particle
motion is computed via molecular dynamics. Simultaneously, the solvent particle concentration is controlled
by direct comparison of the chemical potentials in two reference sydjames solvent and network including
solven}, which are calculated using Widom'’s test particle method. The simulated swelling isotherms exhibit
complex behavior: at the subcritical conditions considered here, the swelling ratio decreases with increasing
pressure. At the intermediate supercritical temperatures the isotherms exhibit a peak, which disappears with the
elevation of temperature. At high temperatures, the swelling ratio of the network increases monotonically with
increasing pressure. The corresponding isobars also exhibit a maximum, which broadens and shifts to higher
temperatures with increasing supercritical pressure. These results are in qualitative agreement with the predic-
tion of a modified Flory-Huggins theory and with the results of known experiments. Furthermore, the self-
diffusion coefficients of the solvent in the network and in its pure state are simulated. The solvent mobility in
the network is significantly decreased because of the hindrance of network beads, but exhibits different
behavior at subcritical in comparison to supercritical temperatures.
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[. INTRODUCTION solvent chemical potentials are calculated via Widom'’s
method[11]. The resulting values in the network simulation

Computer experiments of polymer networks are maoti-cell and in a simulation cell containing only solvent at iden-
vated by the fact that in contrast to experimental systems théical thermodynamic conditions are compared and are used
precise control of the network structure is straightforward to transfer solvent particles between the simulation cells until
Consequently, the relation between swelling behavior anghemical equilibrium is attained. Knowing the values of the
network structure becomes more transparent. Although thefghemical potentials is useful for understanding the molecular
are a number of molecular simulation studies on the dynamigechanism of the temperature and pressure dependence of
and structural properties of polymer networlsee, for ex- the swelling behavior. In particular we discuss the'tempgra—
ample, Refs[1-3]), detailed studies of their swelling behav- ture and pressure dependence of the network swellinggatio

ior including explicit solvents are scarce. Recently, Escobedﬁéhwh is in very good qualitatively agreement with an ex-

and de Pablo have published Monte Carlo simulations on th nded Flory-Huggins model. The complex swelling behav-
10r is attributed to the interplay between the excess solvent

swelllng_of athermal gelp4] and for _correspondlng gel sys- chemical potentials and the solvent densities in the two simu-
tems using square well and modified Lennard-Jones poten;

ials [5]. Kenk L h d q bined di ation boxes. The diffusion of the solvent in the network is
tials [5]. Kenkareet al. have conducted combined discon- also investigated, and the results are found to be in good

tinuous molecular d'ynamics and Monte Carlo_ simulations o, -cord with corresponding experiments.
the swelling behavior of an athermal gel with hard-sphere
solvents[6]. Aydt and Hentschk§7] also published results
for swelling equilibria in model network-solvents systems
with Lennard-Jones nonbonded interactions using Gibbs-
Ensemble molecular dynamics simulatiof®,9]. To our In our simulations the particle transfer between a
knowledge, these are the first simulation studies on solventetwork-solvent box and a pure solvent box is controlled by
network phase equilibria with explicit inclusion of solvent the direct comparison of their respective solvent chemical
molecules. potentials, which are calculated via Widom’s methad]. In
Applications of networks are usually confined to subcriti- equilibrium the two boxes, coupled in this fashion, possess
cal solvent conditions. But with the increasing use of superthe same temperature, pressure, and solvent chemical poten-
critical fluids in experiments where small changes in temdial. Such two-boxes—particle-transfer simulations have the
perature or pressure may affect the solvent quality of thedvantage that the chemical equilibrium between the bulk
supercritical fluid significantly10], the theoretical investiga- phases can be studied without having to include interfaces,
tion of network swelling including supercritical as well as which are both time and space consuming. In addition, we
subcritical fluids also is of increasing interest. In this papethave access to the dynamics in the network, because the
we use classical molecular dynamics to investigate the swellkormal particle translations follow the classical equations of
ing of a model network by subcritical and supercritical one-motion. Hereafter we distinguish the two simulation boxes
site solvents. During the molecular-dynamics simulations thevia the indices 0 and 1, and we define a transfer varigble

II. SIMULATION METHOD
AND MODEL CONSTRUCTION
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M= Bt B @D The first sum in Eq(9) describes the nonbonded potential

energy in the pure solvent box, Wherg=|Fi—Fj| is the
distance between two solvent particles. The second sum rep-
resents the nonbonded potential energy in the box containing
(2)  both the network and the solvent, where;, =|r;,—r;/| is
the distance between two interaction centers, including
solvent-solvent, solvent-network, and network-netw(rk-
andpuy, the excess chemical potential, can be calculated vigond the 1-2 interactionsnteraction pairs. To increase the

for every solvent particleé=0 or £=1 mean that a particle
resides in box O or 1, respectively. In oNMPT (constant Z/{LJ:E 4ej;
total number of particles, pressure, and temperasiraula- =
tion, the chemical potential in the two boxes,(k=0,1),

can be expressed Hh¥2] X

(1=&)(1=¢). (9

where,u}(, the ideal gas chemical potential, is given by

(N +1)AS
(Vi)

w=kgTIn

the NPT version of the Widom insertion method: numerical stability during particle transfer without, however,
affecting the equilibrium properties of the system, we use a
e (Viexp(— Boy)) parabolic functiorif,= —Ei<j[xij(rij+b)2+ gij], instead of
m=—kgTIn vy the Lennard-Jones potential whenevgris smaller than an

inner cutoff radiusd. b shifts the vertex of the inverted pa-
rabola leading to a nonzero forcergt=0. The parameters
Xij and {;; can be evaluated from the conditiobs ;(d)
=U,(d) and dif 4(d)/dr;j=dif(d)/dr;;. Here we use
d/oi;=0.7 andb/coi;=0.026. In addition, we use a long-
enced by the randomly inserted solvent test partiolin the ~ aN9€ CUtoffr ¢ =2.9c; , beyond which the potential energy
above eéuations denc))/tes ensemble averaggs. © is 0. The interactions between bonded network béadsare
The equations of motion governing the time evolution of €Presented by a harmonic potential
our system are

HereN,(k=0,1) is the number of solvent particles in simu-
lation boxk with volumeV, , A is the thermal wavelength of
the solvent,8=1/kgT, wherekg is the Boltzmann constant,
T is the temperature, and, is the potential energy experi-

Unei= 2 Kn(lij=10)%. (10)
. 1ol . )
Vi m; or, Seois @ Herek, is the force constant, ang, andl, are the actual
length and the reference length of the effective bond con-
O - necting the network beadsandj. The angular brackets in-
ri=vi+mdi, ©) dicate that the summation includes all relevant pairs in the
model network. Our model network which is not intended to
Ly be a chemically realistic model on the atomic level, is a
L e (6) sixfold coordinated simple cubic lattice with a lattice con-
k stant 2, (see Ref[7], Fig. 1). Note that we use periodic
boundary conditions for the bonded as well as the nonbonded
KT (P, —P) ) interactions in our system. The corresponding force field pa-
KL 37p . stk ' rameters together with the thermostat and the barostat cou-

pling constants are compiled in Table I. The parameters for

1 T ) the unlike interaction centers are calculated using the

Lk —(1_

:27'1'

(8)  Lorentz-Berthelot mixing rulefl4]. Note also that we have
tested the dependence of our results on the thermostat and
o . barostat coupling constants, but we did not find any signifi-
which is the weak coupling method due to Berendeeal.  cant effects in a wide range bracketing the values given in
[13]. U is the total potential energy of the entire system, andrgple |.
Fi and Ji are the position and the respective velocity of in- In order to investigate the swelling of the model network
teraction centeii with massm;. Tingx and Ping are the in contact with the one-site solvent, we initially start with
instantaneous temperatures and pressuresyaadd 7p are 256 nontransferable network beads and 174 solvent particles
the temperature and pressure relaxation timgsis the iso-  distributed homogeneously in box 0. Box 1 contains 836
thermal compressibilityL, 2 is the volume of boxk. The  solvent particles. To relax the unfavorable initial network
equations of motion are integrated via the leap-frog algogeometry, a 19time stepsNV T simulation is executed first
rithm [14] with an integration step\t=1.42x10 2 in re-  without solvent transfer. Subsequently, R T simulation is

Tinst,k

duced time units. carried out allowing solvent exchange afteP 1bne steps.
The total potential energyl is given byU=U, ,+ U,  Typical simulation runs range from>310° to 6x10° time
where steps total. The solvent exchange between the two simulation
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TABLE I. The force field parameters and the thermostat, kBTV[@Z(Baz—B )
barostat parameters. The solvent possesses only one center of type + — —Inal|. (12
C. Ny represents the network sites. Note that we have scaled the vo [Q 2
unit to makeT,=P.=m=1 in our system. [Note that @,—1)°** in Egs. (16) and (19) of Ref. [7]
Lennard-Jones o . m should be replaced bygg—1)~?**.] Herev, is the volume
of the unit lattice cell, and/ is the total volume of the sys-
c 0.457 0.779 1.0 tem. The first term in Eq(12) is the configuration energy,
Ny 0.580 0.779 10 where x=—0, (et €xn—2€19)/(2ksT), x1= — €11/
(2kgT), and y,= —0q,€,,/(2kgT). q, is the coordination of
Bond stretch Ky lo the lattice, anceq4, €,,, andeq, are the site-site interaction
energies between solvent-solvent, polymer-polymer, and
Niv—Ny 9083.1 0.722 solvent-polymer pairgnote that there are no interaction en-
ergies involving empty sitg¢sThe solvent volume fraction in
Value the gel ¢} is defined asp)=N;Q./Ny, and the network
At 1.42¢10°3 polymer volume fraction igp,=N,Q/Ngy. The quantitye is
T 0.142 given by <p:<p?+ ¢,. The second term is-T times the
ol Ky 0.308 configuration entropy, and the last term 4sT times the

elastic entropy of the network. Here= (V/V,) 2 is the iso-
tropic one-dimensional deformation ratio of the network.

boxes is controlled by direct comparison of the solventyie that the last term in Eq12) is obtained straightfor-
chemical potentials, which are calculated by Ef). This wardly by re-deriving Eq.(21-6 in Ref. [18] using

means that during 210° time steps X 10* test particle N3 . T N2
positions are generated at random in each of the two boxe 5V/V.) for th.e cubic Iattlcg instead ofdy/V) . fqr
e diamond lattice, wheréV is a small volume inside

and the excess solvent chemical potential is calculated via,". e ; .
b which the crosslinking reaction can occur. Thus, the equation

Eq. (3). A solvent patrticle is then transfered by changing its
¢ value from O to 1 or 1 to O attempting to reduce the chemi-Cf State for the gelcomposed of the polymer network and

cal potential difference. Subsequently this process is rethe solventis P=—(dF/dV)y, 1, i.e.,
peated.

% UoP
lll. LATTICE THEORY P*=1—=
B
In order to compare our simulation results with a simple N

theoretical model, we extend the Flory-Huggins lattice _ N _ N, 4 1 N
theory[15] by adding empty sites to the system, which is a Xe1¢2~ (X101 X2¢2) @ s IN(1=¢)~¢
Sanchez-Lacombe—type propofab]. The incorporation of
the empty sites is nontrivial and has been considered in other _ ¢ P f (13)
similar theorieg5,17] in the context of swelling phenomena. Q 3/

Here we extend a calculation originally presented in [REf.

including chainlike solvents as well as the sixfold coordina-Similarly, the free energy and the corresponding equation of
tion of our model network in the elastic entrofand remov-  state for the pure solvent outside the gel can be written as
ing an unnecessary assumpliofihe model is a cubic lattice

of Ng=N;Q¢+N,Q+ Nj sites, whereN, is the number of kg TV © o7 oF < <
solvent chains occupyin@s neighboring lattice sited\, is F=——| " xie"+ Q—|”—+(1— eD)In(1-93) |,
the number of network polymer chains occupyi@gmeigh- 0 s s (14)
boring lattice sites, anll; is the remaining number of empty
lattice sites. The free enerdyis given by VP 1
P* = = — x10$2+ ——1) e1—In(1-¢3), (15
F=Uconr— TSon— TSl (11 kgT ! Qs ! v

whereU .onf, Sconf, @aNdS,, are the configuration energy, the
configuration entropy, and the elastic entropy, respectivel
Specifically we have

wherecpf is the solvent volume fraction. Using that=1 for
Yihe dry network, we can write the equation of state in this

case as
kgTV N N
F=——[xere2= (X101 X202) ¢] . ) ®20
0 P* = —x2050=IN(1— @20 — @20t 30" (16)
KoTVIL, 61, 92,92 1 i)
vg |Qs Qs Q Q ¢ ¢ where the subscript 0 refers to the dry network. In equilib-
rium, the chemical potential of the solventu,
_ Qs—1 N Q-1 |r,qZ_1 =(dF/dNy)y 1, should be the same inside and outside the
Q. f17 g %2V gel. Therefore we obtain
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FIG. 1. Time evolution of the reduced solvent
chemical potentialsgw), the reduced pressures
(Pinst/ P¢), and the reduced solvent number den-
sities (o°p) in the two coupled simulation boxes
during runs approaching the equilibrium condi-
tions T,=0.89 andP,=2.17 (left panels and
T,=2.10 andP,=2.17 (right panel$. The solid

-50 . L -50 L L lines represent quantities in the pure solvent box,
T T 0.125 T T and the dotted lines represent the same quantities
06 o K in the network box.

0.075 | ]

s BT ot s

. 1 1 0.05 x“‘*wﬁ""“’”’“‘ﬂ"“«’“”’“‘““"lwmfw”vww
0 1 2 3 0 1 2 3
simulation time [10%steps] simulation time [10%steps]
1 N 1- ¢S this work is in very good agreement with corresponding data
(X— X1~ X2) P2+ 2x1(@5— @) + —In—ls +1In 1 ‘0. from Ref. [19]. The broken lines represent the results ob-
s ¢ —¢ tained via virial expansions includind}, i.e., Bu®
(17 ~32_.(n+1)B*, ,;p*" [20]. Here B* is the virial coeffi-

. N T, M3 . .
Bearing in mind that the swelling ratiQ=V/Vo= ¢ o/ @5, _(I:_'ﬁnt d'?"ded ?gfr %WBZ ' andpk 'S ;he regu?ezdl d?n$lty'
Egs.(13), (15), (16), and(17) can be solved numerically for € values olb; andb; are taken rom ef21]. t.'s

the variablespy o, @f, @?- andq. The interaction parameter easily seen that_only at very low densities th_e expansion can
X1 can be obtained via the critical isotherm of EfS), i.e., be qsed to predict the excess sc_)lvent chemical potenuql.
x1=2T./T, whereT_ is the critical temperature of the pure Flgure 43 shpws the simulation results for the §we|llng
solvent, For the other two interaction parameterand y, ratioq as a_functlon _of reduced pressure for the various tem-
we use the expressiong=uT,/T+v and X2:U2Tc/'|l peratures, i.e., the isotherms. The swelling behavior of the

. . . network in contact with the subcritical solvent is strongl
+v,, Which are subsequently used in this context, where gy

v, Uy, andv, can be obtained by fitting the simulation re- 3
sults semiquantitatively. ' " T=217simulation o
s T,=1.56 simulation  x
- o 2|
IV. RESULTS AND DISCUSSION 2 =156 viral exgansion ________
The characteristic quantity describing the swelling of the | T7=0-89 virial e",ﬁ’gf’_‘ ?'1091 ]
network is the swelling rati@. It is defined(see aboveas -
the volume of the swollen netwoX divided by the volume
of the network in a dry reference stayg at the samé and
T. HereV, is obtained via a 10time stepsNP T simulation ]
of the dry network with 256 sites. We use several different
subcritical and supercritical conditions in the simulations, - i
i.e., T,=T/T. takes on the values 0.79, 0.89, 1.05, 1.26, o
1.56, 1.84, 1.97, and 2.10, aid=P/P_ takes on the values [ el
1.30, 2.17, 4.34, 6.52, 8.69, 10.86, 13.03, and 15.20. Fere 2} o .
and P are the critical temperature and the critical pressure I - o
of the one-site bulk solveribur units are such that.= P, . . . o @ . .
=1). - ’ ’ ’ ’ ’
To illustrate the simulation method, Fig. 1 shows the ap- 0 02 04 3 06 08 !

proach to chemical equilibrium for two selected conditions.

The fluctuations of the quantities in the network are large G, 2. Reduced excess solvent chemical potengal9) as a
compared to those in the solvent box, but the equilibration ofynction of reduced number density3p) in the solvent box. The
the system is well established. As a check of our chemicadymbols are the results of this work, and the solid line represents a
potential calculations, Fig. 2 shows the reduced excess sofesult taken from Ref[19]. The reduced excess solvent chemical
vent chemical potential as a function of reduced number derpotentials obtained from a virial expansion are shown as broken
sity in the solvent box. Notice that fdar,=1.84 the result in lines.
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[ o 15 e
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" 1 2 1 N 1 N N 1 N L " " 1 N N N L 1
4 8 12 1 1.5 2
(b) (b)
PI’ Tr
FIG. 3. The simulated)-P, isotherms. The symbols ifa) are FIG. 4. The swelling ratioq) as a function of reduced tempera-

the simulation results, whereas the lines serve to guide the eye. Thare (T,) for the indicated pressures. The symbolganhrepresent
lines in (b) represent the results of the modified Flory-Huggins the simulation results, and the lines serve to guide the eye. The lines
theory. Herex=0.7/T,+0.5 andy,=0.2/T,+2.2. The parameter in (b) are the predictions of the modified Flory-Huggins theory
values are selected by semiquantatively fitting the isotherm obusing the same interaction parameters as in Fig. 3

tained forT,=2.1in (a).

ment with the corresponding simulation results. In R&f.
different from that in contact with the supercritical solvent. the authors also show that the swelling of the network is
For T,=0.79 and 0.89g decreases monotonically with the generally greater at higher pressure under supercritical tem-
increase of pressure, while the isotherm exhibits a peak foperatures. A similar tendency can also be found in experi-
T,=1.05. Such behavior is also discernible in the curve forments, for example, for the swelling of silicone rubber by
T,=1.26, but the peak has moved to a higher reduced presupercritical carbon dioxid¢10,22 (T,=1.01, 1.06, and
sure. For the higher temperaturélg € 1.56, 1.84, 1.97, and 1.13, the volume of the silicone rubber increases with in-
2.10, q increases monotonically with the increase of thecreasing pressure up B =4.07. It should be noted that our
pressure. These differences in the network swelling behaviaresult deviates from the corresponding result shown in Fig. 4
can be discussed in terms of the difference of the excessf Ref. [7] due to a programming error in the simulation
solvent chemical potentials in the two simulation boxese  discussed in this reference.
below). By semiquantitatively reproducing the isotherm at Figure 4a) shows simulated isobars for six different pres-
T,=2.10, we obtain the above parametar® andu,, v,. sures ranging from subcriticalP(=0.87) to supercritical
Slightly different values for these parameters may yield anP,=1.30, 2.17, 4.34, 6.52, 10.86, and 15.20nditions. It
equally good fit, but this is not important here. Based oncan be seen that for the subcritical pressure, the isobar mono-
these values we may predict the shape of the other isothernsnically decreasesi.e., the network shrinkswith the in-
using our modified Flory-Huggins model. As is shown in crease of the temperature, while under the supercritical pres-
Fig. 3(b), the theoretical curves are in good qualitative agreesures, the isobars exhibit a peak. This peak moves to higher
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temperature with the increase of pressure and becomes ir [ ' ' T-089 —5— |
creasingly less pronounced. As is shown in Fi¢h)4the I 17105 —=— |

. 2 ; . T=1.26 —e—
theoretical predictions for the isobars exhibit the correspond- 15 | T=156 —+ —
ing behavior. L T=1.84

Combining Figs. 3 and 4 we can draw the following con-
clusions. Under the considered subcritical conditions, the
network shrinks with increasing pressure or temperature; a 1 I
intermediate supercritical conditiomshas a maximum, and <
this maximum shifts to higher supercritical pressures or tem-
peratures with the increase of the corresponding temperatur
and pressure; at the highest supercrital pressures and ten
peratures considered here, the network appears to swe
monotonically with the increase of temperature and pressure
This conclusion is in accordance with the results of other
theoretical[5,23] and experimental investigatiof22,24] in
the given subcritical and supercritical conditions. (@)

For a further understanding of the mechanism of network
swelling, we can define the solvent site absorbabfigs the
ratio of the number of absorbed one-site solvents to the num I
ber of network beads, i.eA=Ngyyend Npeag: We define this 2r
guantity because it reflects the capability of the network to
absorb solvent, and it is directly related to the difference of I
the excess chemical potentials of the solvent in the two"’?? 151

o 5

boxes. Using Eq9.1)—(3) we obtain iy gf
=, a
prex B~ )] § )
A== ; SRS (18
N

0.5 | o

wherep, is the number density of the solvent in its pure state
in equilibrium, py is the number density of the network
beads,ug and u] are the excess chemical potentials of sol-
vent in the gel and in the pure solvent, respectively. In Fig.
5(a), the site absorbabilitA is plotted vs the reduced pres-
sure. Note thatA behaves analogous to the swelling ratio !

ressure P,) for different reduced temperaturet) exdB(us

shown in Fig. 8a). The difference of the excess chemical P s
5)] and p,/py, represented by the solid lines and the dotted

potentials of the solvent between the two simulation boxes * . ; X
exd B(uS—1S)] and the density ratig, / are shown in ines, respectively, as functions of reduced pressure. The filled
Fi ’gl ’U‘?c . ¢ y fq)l PN itical squares are the results fdy=1.05, and the hollow circles are for
ig. 5(b) as functions of pressure for two supercritica tem'Tr=2.10.

peratures T,=1.05 and 2.1D It can be seen that ek@(u]

—up)] always increases with increasing pressure, while the One advantage of molecular dynamics simulations in
density ratiosp; /py always decreases. Furthermore,Tat  comparison to corresponding Monte Carlo simulations is that
=1.05, the pressure has a stronger effect on both the excegse self-diffusion coefficienD can be calculated, for in-
chemical potential difference and the density ratio as comstance, via the Einstein relation

pared with theT,=2.10 case. As a product of these two

quantities, the site absorbabili®x shows a peak near the CA{Jra(H)—r,(0)]?
critical pressure foil,=1.05, while it increases monotoni- Da:tlml 2t '
cally with the increase of pressure fof=2.10. Therefore N

we draw the conclusion that the 'comp.eting _effects of eXCeSfhere a=x,y,z, andD=1/3(D,+D,+D,). We show the
chemical potential and the density ratio during the pressurgelf_gitfusion coefficient of the solvent in the gBl, and in
variation give rise to the observed complex behavior. Thene pylk solvenDs as functions of reduced pressure in Figs.
site absorbability can also be obtained easily from the mod|7(a) and 7b), respectively. Note that Fig(@ also shows the
fied F|0JY'HEU99in5 theory vieA=N;/Ny= ©10/ 20 and  ratio Dy /D as a function of reduced pressure. At any of the
exfd B(u1—up)] can be calculated by rewriting E€L7). Fig-  indicated temperatures, the diffusion coefficients basically
ure 6 shows the theoretical site absorbability and[ 8@  decrease with the increase of pressure, and in general, they
—ug)] andpq/py as a function of reduced pressure accord-are much higher at elevated temperatures for constant pres-
Mo P1lpN p
ing to the theoretical prediction. The qualitative agreemensure. Moreover, as shown in Fig(bJ, the values ofDg
between the simulation results in Fig. 5 and the predictionsinder supercritical conditions are on the order of
of the modified Flory-Huggins theory is remarkable. 10°4-10"2 cn?s !, which is approximately 10 times

FIG. 5. (a) The site absorbabilityA) as a function of reduced

(19
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g 8 | o T~2.10 --o--
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Q
< g

(@)

415
1
0?: 3 // =41 Z
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i 1™ - 1184 -
| Ve 3 B =1.97 --%-- |
i g 06 T=210 -0
! i O | ] - —
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FIG. 6. () The results of the modified Flory-Huggins theory for (c) L Eli 1'2
the site absorbability4) as a function of reduced pressui,) for p
r

different reduced temperaturesT,f. (b) exgdB(u;—ug)] and

pi/py, represented by the bold lines and the thin lines, respec- g 7 (@) The self-diffusion coefficients of the solvent in the

tively, as fu'nctlons of reduced pressure Qalculated via the modn‘le(ael (Dy) as function of reduced pressuré) The self-diffusion

Flory-Huggins theory. The Iong-(_jashed lines are the resultd for coefficients of the solvent in its pure stat®d) as function of

=1.05, and the double-dashed lines areTpr2.10. reduced pressuréc) Dy /Dg as function of reduced pressure. The
lines are meant to guide the eye.

larger than the corresponding values at the given subcritical

condition. This type of fast transport of the solvent is crucialture we observe a sudden increase rigar 1 followed by a

in technological applications. Compared to experimentaflow decrease dby/Ds with increasingP, .

self-diffusion coefficient$25] under supercritical conditions

(here we change the units to reproduige=190.53 K and V. CONCLUSIONS

P=46.04 bar for _methane usmgM=1.23_5 kJ_/moI ar_ld In this paper, we investigate the swelling behavior of a

oy=3.79 A), we find that the values obtained in our simu-mqqe| network by absorbing a Lennard-Jones one-site sol-

lations (at P,=2.17, 4.34, 6.51, we obtain 18.8, 8.77, 5.94yent under subcritical and supercritical conditions using a

and 36.2, 18.4, 12010 * cnfs ! at T,=1.56 and 2.10, hybrid molecular dynamics-particle insertion simulation

respectively are in very good agreement with those obtainedtechnique. We also correct erroneous results obtained for this

from the experiment&at P, =2.39, 4.56, 6.73, the values are system in Ref[7]. In this work, chemical equilibrium is

15.8, 7.70, 5.74, and 31.5, 18.4, 1180 % cn?s ! at T, attained via particle transfer controlled by the direct compari-

=1.55 and 2.12, respectivelyAs shown in Fig. Tc), the  son of the solvent chemical potentials in the two simulation

diffusion of solvent in the network is significantly decreasedboxes. Temperature and pressure changes give rise to com-

because of the hindrance of network beads. For supercriticplex swelling behavior. Under the considered subcritical

temperatures there appears to be an overall increase obndition, the network shrinks with increasing pressure or

D\ /Dgwith increasing pressure. For the subcritical temperatemperature; under the intermediate supercritical condition,
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the swelling ratio exhibits a maximum, and this maximumpected, hindered by the network beads. But this effect de-
shifts to higher supercritical pressures or temperatures withends rather strongly on the different subcritical or super-
the increase of either temperature or pressure; at the highestitical conditions. A modified Flory-Huggins model is also

supercritical pressure and temperature considered here tRgoposed in this work, and the qualitative agreement between
network basically swells monotonically as temperature okthe simulations and the theoretical predictions is found to be
pressure increase. We attribute the complex swelling behayyyite remarkable. For the conditions studied here, our results

ior to the competing effects of the excess solvent chemicalre in accord with other theoretical investigations and experi-
potential difference and the density ratio computed for thyental results.

two boxes. The mobility of the solvent in the gel is, as ex-
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